

Grid Control Theory and Resilient Control

Power System Resiliency

- Historical reliability predecessor to resiliency
 - Physical elements

- Multiple generation stations with fuel source diversification
 - Various types of power plants
 - Fossil fuel, nuclear, hydropower, solar, wind, geothermal
 - Various types of fossil fuel burners at a plant
 - Coal, natural gas, heavy oil, diesel
 - Geographically distributed
- Mesh-based transmission network topology
 - Multiple power flow pathways
 - Connections to multiple power plants
 - Tie-lines between utilities

Power System Resiliency

- Historical reliability
 - Control elements
 - Network protection controls for abnormal operating conditions
 - Circuit-breaker isolation of faulted physical elements
 - Reclosing functions for rapid restoration of temporary or momentary faults
 - Power plant controls
 - Generation controls voltage and power delivery to the grid
 - Remainder of plant controls production of electric power from fuels
 - Local pumps, valves, conveyers, blowers and fans, etc.
 - Distributed regulation controls
 - Voltage control
 - OLTC transformers, voltage regulators, capacitor banks, SVC, StatCom, etc.
 - Power flow controls phase shifting transformers,

3

Central controls

Balance of power and contingency preparation

Overview of Electric Grid Controls

- Electrical grid control points
 - Power plants
 - Generator controls
 - Output power
 - Power plant operations
 - Substations
 - Network / grid controls
 - Power flows
 - Network protection
 - Tie-lines
 - Interchange controls
 - Power flows
 - Regional stability

Overview of Electric Grid Controls

Operational periods

- Normal operations
 - Power balancing: generation level and customer load consumption

$$0 = \sum_{\forall gen} P_{generators} + \sum_{\forall tie} P_{tie-lines} + \sum_{\forall ld} P_{loads} + P_{losses}$$

- Contractual fulfillment to other utilities and region
 - Tie-line imports and exports between other utilities
- Economical operation of the system

- Low cost electrical production, maximize revenue
- Optimal generation dispatch
- Optimizing the control point to minimize the impact to the system by a major disturbance or perturbation
 - Minimize impact of N-1 and N-2 contingencies
 - Spinning reserves and equipment power margins

Overview of Electric Grid Controls

Operational periods

- Abnormal operations
 - Physical failures
 - Loss of a generator
 - Power plant issues, fuel supply
 - Loss of a transmission line or transformer
 - Faulted circuits, transformer failure, circuit breaker failure
 - Loss of ancillary equipment
 - Capacitor banks
 - Control failures
 - Mis-operation of network protection
 - Sensory measurement errors
 - Data errors in communication network
 - Loss of communications
 - Software errors in the energy management system or the SCADA system

Overview of Electric Grid Controls

Operational periods

- Recovery operations
 - System resource evaluation
 - What equipment is still functioning?
 - What parts can be restored quickly?
 - Stabilizing the current operating point
 - What equipment is operating near its limits?
 - What temporary actions must be made to move away from critical limits?
 - Recovery of generation
 - What standby generation can be brought online quickly?
 - How much intertie power can be imported?
 - Recovery of outage areas
 - Who are the critical customers that are without power?
 - Repairs and restoration
 - Where does the army of line workers need to go?

-

Overview of Electric Grid Controls

Classical grid threats and events

- Weather and other natural disasters
 - Lightning, high-speed wind, heat, ice and snow
 - Earthquakes, fires, floods, volcano eruptions
- Animals and vegetation encroachment
 - Tree limbs, fast growing plants, diseased trees
 - Squirrels and rodents, bears, birds of prey
- Human and equipment accidents
 - Automobile crashes, low-flying aircraft
 - UAV, balloons, etc.
 - Human errors by utility workers
- Equipment failures
 - Device ageing, power overloads, dielectric breakdown, internal heating, etc.

Overview of Electric Grid Controls

- Malfeasant grid threats and events
 - Theft and vandalism
 - Substation attacks, copper theft, shooting at equipment, tower damage
 - Cyber attacks
 - Information theft, compromised database
 - Sensory data corruption, false data injection
 - Control signal corruption, false command injection
 - Overtaking equipment, denial of function
 - Other
 - Disgruntle employees or community members
 - Carelessness, senseless behavior, pranks, being obnoxious

Power Plant Controls

- Classical internal plant controls
 - Local control room with power plant operators
 - Systems of controllers for supporting the production of mechanical power to the generator
 - Supervisory and hierarchy control schemes with data collection
 - Alarms and warning systems associated with power plant operations
 - Conditional monitoring of the plant's equipment
- Classical interface controls with the grid
 - Governor / shaft speed control

- Scheduled active power production and maintain system's electrical frequency at 60 Hz
- Voltage regulator and excitation control
 - Scheduled reactive power production and maintain system's voltage profile

Substation Controls

- Classical substation controls
 - Most substations are automated and unmanned
 - A few critical and important substations have small crews for quick response times
 - Functions of substations
 - Primary: voltage transformation, transmission line interconnects, and fault protection
 - Secondary: reactive power supply and voltage regulation
 - Control points
 - Circuit breaker operations, local tap-changer controls, local reactive compensation controls
 - Protective relay (and other Intelligent Electronic Devices, IED) setpoints and parameters
 - Data gathering

- Operational and non-operational measurements and performance data
 - Operational data includes power flows, voltages, circuit breaker status, and fault currents

Utility Control Center

- Centralized generation and grid control
 - Operator stations
 - Energy Management Systems (EMS) and System Control and Data Acquisition (SCADA)
 - State Estimation (SE)
 - Optimal Power Flow (OPF)
 - Performance indices and voltage stability
 - Contingency Analysis
 - Load flow and fault analysis
 - Event and data recordings
 - Regional energy market transactions
 - NERC region (balancing authority) interface

Distributed Management System

Energy Management System

SCADA

Data Bases

Front-End Processors

Communications

Substation Remote Terminal Units

Field Devices

Generator control

- Control objectives
 - Produce electricity at the specified power
 - Maintain the shaft speed for 60 Hz operation
 - Maintain the specified terminal voltage
 - Drive the Area Control Error (ACE) to zero
- Control laws
 - Over-frequency (OF) and positive ACE
 - Reduce the prime mover power
 - Under-frequency (UF) and negative ACE
 - Increase the prime mover power

- OF and negative ACE or UF and positive ACE
 - Use weighted coefficients in the counterbalance between frequency and ACE for dominate error

Generator control

- Control setpoint and remote inputs
 - Output power level from Economic Dispatch
 - Terminal voltage level from Optimal Power Flow
 - Area Control Error signal from SCADA
- Feedback loops
 - Governor shaft speed control
 - Steam throttle valves or hydro penstock gates
 - Automatic voltage regulator, excitation control

- Rotor magnet currents
- Other controls and protection systems
 - Power system stabilizer
 - Loss of field/excitation, reverse power/motoring, out-of-step/loss of synchronization, over excitation, neg. sequence, voltage/frequency, off nom. frequency
 - Phase and ground fault protection, differential protection

Generator controls

Generator controls

- Power plant component modeling
 - Governor speed control
 with droop control

Turbine-Generator Power

Generator controls

- Basic generator control loops
 - Single generator system

20

Generator controls

- Basic generator control loops
 - Two generator system
 - Simple tie-line between the two generator
 - Manual set of generation dispatching ratio

Generator controls

- Basic generator control loops
 - Two generator system
 - Simple tie-line between the two generator
 - Area Control Error (ACE) used to coordinate generation
 - Tie-line bias control

• Example

- Two systems, each with a generator and load center, tied together with a tie-line
- Event: 10 MW load change in area 1

Parameter (Base Power = 1000 MVA)	Gen 1	Gen 2
Generator inertia constant, H [J/W]	3.0	4.0
Freq. sensitive load coeff., D [%P/%ω]	1.5	1.2
Governor Speed regul., $1/R$ [%P / % ω]	18.0	15.0
Governor time constant, $\tau_{\rm G}$ [sec]	0.22	0.27
Turbine time constant, $\tau_{\rm T}$ [sec]	0.47	0.43

Simulation results

Power System Resiliency

- Grid control improvements towards resiliency
 - Long history of continuous improvement
 - Characteristics today
 - Complex network
 - SCADA structure
 - Energy Management System
 - Distributed controls
 - Power plant operations
 - Substation operations
 - Equipment
 - Utility service area control center

- Technologies advancements
 - Synchro-phasor measurements
 - Direct measurement of voltage and current phase angles
 - Dynamic state estimation
 - Estimate the dynamic state variables of the system in addition to the classical static state variables
 - Integrated circuit breaker status with system model
 - Real time digital simulation (for Digital twin)
 - Faster than real time calculation of system dynamic behavior

Resilient Grid Control

- Scalable control areas
 - Each area is responsible for balancing
 - Each area has similar control functions

- Past design objectives:
 - Generally a radial distribution network with single power source from a substation
 - When and where economical, provide interconnections between distribution networks
 - Located at the edges of the networks, providing back feeding power after isolating damaged sections
 - Normally open-switch network loops for manual operation by line personnel
 - Coordination of reclosers (circuit breakers), line sectionalizers (switches), and fuses
- Today designs:
 - Radial distribution network with many more open loops and open mesh circuits
 - Digital logic system for activating remote-controlled sectionalizers
- Future designs:

Automated network sectionalizing based on fault location system

- Area: Radial distribution networks
- Challenge: Loss of electrical connections due to damaged feeder circuits
 - islanded sections of the network
- Objective: Restore electrical pathways to undamaged but isolated sections
- Approach: Take advantage of nearby live feeders to connect with islanded sections

• Example

- Faulted network #1 between loads 21 and 22
- Reclosing operations trigger the sectionalizer between 13 and 18 to open circuit and isolate the northwest section of network #1

• Example

- Post fault reconfiguration
 - Interconnection between Network 2 and Network 1 should not be closed
 - Interconnection between Network 1 and the network further north (250-251) should be closed to back feed power to loads 25 through 30
 - Sectionalizer between 23 and 25 should be opened before closing the northern interconnection
- Requires significant data to automate
 - Fault locating and automatic sectionalizing

Questions

