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Overview

• Basic overview of electric power systems
• Power systems equipment
• Operating and coordinating a complex grid 
• More information, distributed resources, and customer expectations.
• Balancing supply and demand in a dynamic system
• Grid operations evolving to enable more flexibility, adaptability, and 

responsiveness
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Power System as a Use Case

• Resilient control can be applied in any cyber-physical system with
o Distributed communication and controls 
o Automation support for human operators

• Power infrastructure is pervasive
o Large, complex systems
o Mix of decentralized and centralized control
o Human operators with increasing automation support
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Power System Control

• Range of time scales
o Cycles to seconds with autonomous 

controls
o Tens of minutes to hours with operator 

response

• Local measurements versus 
communicated measurements
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What is the Objective of the Power System?

• Transfer power from generation to end users

• Balance generation and load
o Load varies
o As does generation in some cases
• Renewables
• Non-dispatchable 3rd party owned
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Historical Layout of Power Infrastructure
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Generation

• Significant generation from synchronous machines
• Coal, Natural gas, Nuclear, Hydroelectric
• Size from 10 MW to over 1000 MW machines
• Mostly controlled by system operator (dispatchable)

• Generate at relatively low voltage 
• 12-24 kV
• Transformers step up to transmission voltage
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Synchronous Generators

• Speed of rotation aligned with power system frequency
• Maintain synchronism
• Closed loop control for power/frequency

• Large mass –stores kinetic energy
• Steam-based turbines store more energy

• Inertial response
• Exchange kinetic energy with grid to respond to disturbances

• Control response to rebalance and achieve more economic and reliable 
setpoint
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Renewable Generation Sources

• Hydroelectric
• Largely uses synchronous machines

• Wind generation
• Mostly based on induction machines 
• Supplement with power electronic controls

• Photovoltaic (PV) generation
• Rely on power electronic controls
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Power Processing vs. Information Processing
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Power Conversion

• Solar cells output dc voltage and current
• Applied voltage across cells/panel/array determine current
• Control for max power

• Need to convert dc to ac to connect to power system
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Type 3 WTG (Doubly-Fed Induction Generator)

• Wound rotor induction machine 
• Variable frequency voltage/current to rotor (+/- 30% of power)
• Much wider wind speed range for power generator
• Most common for land-based applications last 10 year or so
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Type 4 WTG 

• Two options for machines
• Variable frequency voltage/current to rotor
• Most common for off-shore applications last 10 years or so
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Energy Storage

• Fairly limited use in North America
• Older facilities: hydroelectric plants

• Many have some ability to act as storage
• However, often “Run of the river” facilities à little storage

• Dedicated pumped storage projects
• Several in US
• Some merchant projects
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Energy Storage Technologies

• Batteries—increasing application
oLithium ion and variants
oFlow batteries

• Other technologies
oFuel cells
oFlywheels
oIce
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Rating Energy Storage

• Instantaneous power (kW, MW)
• Energy (kWhr, MWhr, Joules)
• Application specific
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Storage Applications
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Operational Considerations

• State of charge
• When to charge/discharge
• Who controls it
oWhat signals? 
oObjectives for the control?
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Transmission
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Transmission – Changing Needs
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Control of Transmission

• Limited options to directly control 
line flows

• Current distributed based on physics
• Can’t force current into one line based 

on a contract
• Limits for transmission system 

components
• Impact of decreased system inertia
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AC Transmission Challenges

• Bulk power flow over long distances
• Dynamic response to disturbances
• Transmission bottlenecks due to

– Steady-state Stability Limits
– Transient Stability Limits
– Power System Oscillation Limit
– Inadvertent Flows
– Short Circuit Current Limits
– Thermal Limits
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Sub Transmission

• Definition voltage level varies by utility

• Typically, 34.5-132kV
oShorter lines

oConnect transmission to distribution substation

• Often connected such that have an equivalent source at each end
o Redundant supply
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Distribution

• Typically, below 24kV
• Mostly radial systems with normally open switches that can be closed
• Often somewhat unbalanced
• Historically designed assuming no power sources connected to system
• Extensive facilities for most utilities
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Distribution: Radial and Meshed
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Performance Expectations

• Maintain frequency to tight tolerance

• Maintain voltage magnitude

• Reliability
• So successful that taken for granted

• Low cost/losses
• Others…
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Power System Protection

• Local protection
• Protection of immediate equipment
• Minimize disruption of loads

• Duration or interruption or abnormal condition
• Larger system issues?

• Impacts on stability of larger system
• Potential for distant impact



What Events Require Protective Actions

• Faults
• Abnormal operation
• Response

oDetect fault in less than cycle
oOpen circuit breaker – faster for transmission
oStart timer and act when timer expires



Redundancy

• Overlapping zones of protection are common
• Backup in case relay or breaker fails
• Time delay if out of primary zone
• Often more sensitive in secondary zone
• Coordination is a key issue



Evaluate Measured Data Based on Algorithm

• Overcurrentà common in radial distribution systems 
• Impedance (distance protection)à transmission
• Differential 



Historical Power System Architecture

• Move toward regulated monopoly to avoid duplication of 
apparatus

• Provided efficiencies in operation/growth that held for decades

31



Evolving Architecture

• Utility owns generation, transmission and distribution
• US investor owned, municipal or cooperative
• Some federally controlled transmission: BPA, WAPA, TVA

• Transmission only own generation and load
• Interconnect to neighbors grew in middle 1900s
• Blackouts in 1960s led to reliability councils
• Evolving exchange between utilities
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Technology Changes

• Communication technology
• Initial Supervisory Control and Data Acquisition (SCADA)
• 50-year history

• Computational tools and techniques
• Electronic control and now digital control
• Big impact on system design and system operations
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Extending Control to Larger System

• Decentralized, automated in short term
• Dispatched generators share in load following for small excursions

• Centralized control schemes in midterm
• Operators in slower regime
• Role of communication
• Renewable generation poses challenges
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Real-Time Operations

• Monitor the system using SCADA –evolved over decades
• Supervisory Control and Data Acquisition
• Now hybrid with phasor measurements, etc. 

• Periodic updates
• Scan rate decreasing with faster computers
• Determine “state” of the system
• Contingency analysis – “what if” simulations
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Time Synchronized Measurements

• Satellite time source
• Provides common time reference for phase angle
• Faster message rate than SCADA systems
• Improve observability of system for operators and autonomous systems
• Enable wide area measurement and control schemes (WAMS, WACS)



Emerging Architecture
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Role of Improved Computation and 
Communication

• Much more data available
• At higher sampling rates
• Much greater visibility on the system
• Allows operation with far smaller margins than in the past 
• More responsive more reliable
• Not without risks
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Risks with Increased Communication

• Can operate the power system much closer to physical limits
o Impact of loss of communication

• Cyberattacks
o Extreme cases: try to bring down system
o Reconnaissance 
o Market manipulation

• Resilience of communication infrastructure and power 
infrastructure
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Operator Interface

• Operators receive processed data from measurements
• Current state of the system—violations
• Violations if certain events occur
• Managing increasing amounts of data
• Human machine interfaces

• Transmission system 
• Distribution level
• Substation and facility level

• Handling increasing data and faster changing system



System Operations: Classical Approach

• Frequency
• Real Power à Generator Governors

• Voltage
• Reactive Powerà Generator Exciters
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Generation

•Most generation located away from load centers
• Some generation nearby for local support 
• Reactive power and somewhat on real power
• In many cities this was coal fired, some oil or gas
• Decommissioned for pollution reasons

• More recently for economic reasons
• Challenges as a result
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Frequency as indicate of Energy Balance
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Generator Governor

• Take action without control center input
o Increase power output when see low 

frequency
o Decrease power output when see high 

frequency

• Frequency as a communicated system-wide 
control signal
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Generator Dispatch: Classical approach

• Base load 
• Large, coal/nuclear à keep at optimum operating point

• Intermediate (mid) load
• Smaller gas (or oil or coal) or hydro that cycle on/off

• Peaking units
• Combustion turbines used in high demand
• Demand response schemes as an alternative
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Hydroelectric Plants

• Fuel is “free,” but many constraints on operation
• Many hydro plants are run of the river plants

§ Limited range of pond height variation
o Dams in series on a river à coordination needed

§ Coordinating with other water users
§ Fixed amounts of water

§ Some regions use hydro to offset variable generation
§ Seasonal variations in availability for up or down regulation
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Wind and Photovoltaic

• Wind and photovoltaic typically operate at max available power
• Can be quite variable at times

o Weather forecasting
o PV more predictable, but can have fast ramps 
o Wind less predictable but slower ramps
o Advantages of regional diversity

• Growth of behind the meter photovoltaic
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Transmission Versus Distribution Control

• Transmission 
oEnergy Management System
oAutomatic Generation Control
oIndependent System Operator

• Distribution
oDistribution Management System
oDistribution System Operator
oIncreasing automation
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Automatic Generation Control (AGC)

• Generator governors
• Scheduled versus actual interchange

o Coordinated between balancing authorities
o Actual is measured flow
o Unintentional flows

• Area control error (ACE)
• Time error
• NERC control criteria
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Balancing authorities
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Balancing Authority responsibilities

• Balance load, generation and net interchange
• Control frequency and time error
• Implement interchange transactions
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Frequency Disturbance Response

• Major generator trips
• Stored energy in system (in rotating inertia) supplies load
• Synchronous generators slow down
• Governors act to stabilize frequency
• AGC acts over time to restore frequency
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Control Error

• Errors of moderate magnitude acceptable
• Control errors that help frequency are good 

• Generating too much power when frequency is low
• Control errors that hurt frequency are bad
• Also look at magnitude of error over time
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Maintaining Regulating Reserves
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Maintaining Regulating Reserves

• Adding variable generation to load variation increases reserve 
requirements

• “Spinning reserve”
• Responsive to AGC
• Regulate up versus regulate down
• Need to maintain reserve around forecasted net load
• Who pays? 
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Contingency Reserves

• Replace lost generator 
• Meet disturbance control standard
• Greater of: 

• MW of most severe contingency
• Percentage of hourly integrated load + hourly integrated gen.
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Options for Meeting Reserves

• Self supply
• Generation
• Energy Storage

• Market structure
• Reserve sharing group/power pool
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Operating Limits

• System designed/planned to handle single (or double 
contingencies)

• Combinations of conditions may require special remedial 
actions

• Equipment current limitsà thermal
• Line and transformers

• Voltage limits
• Stability limits
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Remedial Action Schemes

• Autonomous schemes act in specific circumstances
• Often armed by operator
• Act when preset conditions met
• Increased used as power system is run closer to limits
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Abnormal Situations - Power Outages

• Natural disasters
• Windstorms, fires, tornados, hurricanes, floods, temperature extremes, 

etc.

• Failure of generation or transmission equipment
• Misoperation of the protective equipment
• Cyberattacks can bring down the system
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Microgrids

• Serve local load in abnormal conditions
• Power generation resources
• Electrical loads
• Energy storage system (optional)
• Microgrid controller
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Measures of Performance
Planning Versus Operations

• Reliability
• Interruptions
• Time duration of interruptions
• Frequency of interruptions
• Distribution company point of view versus end user
• Power quality
• Voltage magnitude
• Voltage and current distortion
• Resilience?
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Some Reliability Metrics

• System Average Interruption Duration Index (SAIDI) 

𝑺𝑨𝑰𝑫𝑰 =
𝒔𝒖𝒎 𝒐𝒇 𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓 𝒊𝒏𝒕𝒆𝒓𝒓𝒖𝒑𝒕𝒊𝒐𝒏 𝒅𝒖𝒓𝒂𝒕𝒊𝒐𝒏𝒔

𝒕𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓𝒔
=
∑𝒊𝑼𝒊𝑵𝒊
∑𝒊𝑵𝒊

• System Average Interruption Frequency Index (SAIFI)

𝑺𝑨𝑰𝑭𝑰 =
𝒕𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓 𝒊𝒏𝒕𝒆𝒓𝒓𝒖𝒑𝒕𝒊𝒐𝒏𝒔

𝒕𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓𝒔 𝒔𝒆𝒓𝒗𝒆𝒅 =
∑𝒊𝝀𝒊𝑵𝒊
∑𝒊𝑵𝒊



Reliability Metrics

• Customer Average Interruption Duration Index (CAIDI) 

𝑪𝑨𝑰𝑫𝑰 =
𝒔𝒖𝒎 𝒐𝒇 𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓 𝒊𝒏𝒕𝒆𝒓𝒓𝒖𝒑𝒕𝒊𝒐𝒏 𝒅𝒖𝒓𝒂𝒕𝒊𝒐𝒏𝒔
𝒕𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓 𝒊𝒏𝒕𝒆𝒓𝒓𝒖𝒕𝒊𝒐𝒏𝒔 =

∑𝒊𝑼𝒊𝑵𝒊
∑𝒊 𝝀𝒊𝑵𝒊

𝑪𝑨𝑰𝑫𝑰 = 𝑺𝑨𝑰𝑫𝑰
𝑺𝑨𝑰𝑭𝑰



Reliability Metrics

• Customer Average Interruption Frequency Index (CAIFI) 
• Average System Availability Index (ASAI) –A single customer’s hour of service 

demand is 8760 hours for an entire year.

𝑨𝑺𝑨𝑰 =
𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓 𝒉𝒐𝒖𝒓𝒔 𝒐𝒇 𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆 𝒔𝒆𝒓𝒗𝒊𝒄𝒆

𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓 𝒉𝒐𝒖𝒓𝒔 𝒅𝒆𝒎𝒂𝒏𝒅𝒆𝒅
=
∑𝒊𝑵𝒊 ∗ 𝟖𝟕𝟔𝟎 − ∑𝒊𝑼𝒊𝑵𝒊

∑𝒊𝑵𝒊 ∗ 𝟖𝟕𝟔𝟎



Reliability Metrics

• Average System Unavailability Index (ASUI) - The customers hours of service 
unavailability divided by the customer hours service demand.  Again, the 
customer’s hours service demand is 8760 hours for an entire year.

𝑨𝑺𝑼𝑰 = 𝟏 − 𝑨𝑺𝑨𝑰
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Summary

• Brief overview of power system structure
• Communication and automation
• Operations
• Some measures of performance


