The Intersection of Staying
Secure with Full Speed Ahea

Intel.

Physical Separation

221B BéNKD%Ei iTREET

'’

PDP-8
Electromagnetic emissions —
AM radio plays! 1

User groups offered multiple “music” compilers

What is secure?

Two examples for you

Both very PERSONAL to me

OpenSSL

OpenSSL

* Time to decrypt

* Revealed "how many zeros” were in the private key

OpenSSL

* Time to decrypt

* Revealed "how many zeros” were in the private key

= One account — blamed it on multicore

Meltdown and Spectre

7 &

2017: Unprecedented research results find generic
security holes that exist in virtually all processors.

server processors, desktop processors, tablet processors, cellphone processors, etc.
Intel, AMD, IBM, ARM (Qualcomm, Apple, Broadcom), etc.

Meltdown

Moritz Lipp', Michael Schwarz!. Daniel Gruss',
Stefan Mangard', Paul Kocher®, Daniel Genkin®

Thomas Prescher?, Wemer Haas?
. Yuval Yarom’, Mike Hamburg®

. ?‘ra: University of Technology
* Cyberus Technology GmbH
- 3 Independen:
niversity of Pennsylvania and University of Maryland
S University of Adelaide and Dara6]
© Rambus, Cryptography Research Division

Abstract

The security of compuier sysiems fundamentally relies
on memory isolation, e.g. kernel address ranges are
marked as non-accessible and are protecied from user
access. In this paper, we present Meltdown. Meltdown
exploits side effects of out-of-order execution on mod-
em processors to read arbitrary kernel-memory locations
including personal data and passwords. Out-of-order
execution is an indispensable performance feature and
present in a wide range of modern processors. The attack
is independent of the operating sysem, and it does not
rely on any software vulnerabilities. Meltdown breaks
all secunity assumptions given by address space isola-
tion as well as paravirtualized environments and, thus,
every security mechanism building upon this foundation
On affected systems, Meltdown enables an adversary to
read memory of other processes or virtual machines in
the cloud without any permissions or privileges. affect-
ing millions of customers and virtually every user of a
personal computer. We show that the KAISER defense
mechanism for KASLR [8] has the important (but inad-
vertent) side effect of impeding Meltdown. We stress
that KAISER must be deployed immediately to prvent
large-scale exyp of this severe leak-
age

1 Introduction

One of the central security featuses of today’s operating
systems is memory isolation. Operating \yn.m\ ensure
l.l"ﬂl user applications cannot acoess each other’s memo-
ries and prevent user applications from reading or writ-
ing kerne| memory. This isolation is a comerstone (;:our
computing environments and allows running mulnpw qr[
plications on personal devices of ctccuunlg ;:;cn\s o
multiple users oa a singlke machine in the clo . s
On modern processors, the isolation between 1
pel and user processes 1S typically realized by a superv

sor bit of the processor that defines whether a memory
page of the kernel can be accessed o not. The basic
idea is that this bit can only be set when entering kernel
code and it is cleared when switching to user processes.
This hardware featur allows operating systems to map
the kernel into the address space of every process and
to have very efficient transitions from the user process
to the kernel, e.g.. for interrupt handling. Consequently,
in practice, there is no change of the memory mapping
when switching from a user process to the kemel

In this work, we present Meltdown'. Meltdown is a
nowl attack that allows overcoming memory isolation
completely by providing a simple way for any user pro-
cess to read the entire kemel memory of the machine it
executes on, including all physical memory mapped in
the kernel region. Meltdown does not exploit any soft-
war vulnerability, ie., it works on all major operating
systems. Instead, Meltdown exploits side-channel infor-
mation available on most modern processors, e.g., mod-
ern Intel microarchitectures since 2010 and potentially
on other CPUs of other vendors.

While side-channe| attacks typically require very spe-
cific knowlkedge about the target application and are tai-
Jored to only leak information about its secrets. Melt-
down allows an adversary who can run code oa the vul-
perable processor to obtain a dump of the entire kemel
address space, including any mapped physical memory
The root cause of the simplicity and strength of Melt-
down are side effects caused by Ow-of-order execuion.

Out-of-order execution is an important performance
feature of today's processors in order to overcome laten-
cies of busy execution units, .8, 3 memory fetch unit
poeds to wai for data arrival from memary. Insiead of
stalling the execution, modem processors run np‘mu.:
our-of-order ie., they look ahead and .\d»du? su_‘ 5
quent operations to idle execution units of the p;(\;
sor. However, such operations often have unwanted s«
~Trian smack was imdpendeaty found by the s of s et
sad Jazn Hoen from Google Propeat Zero

Spectre Attacks: Exploiting
cocher!. Daniel Genkin?, Daniel Gruss”, : g
s omas Prescher®, Michael Schwarz>, Yuval Yarom
! Independent)
2 University of Pennsylvania and University of

Moritz Lipp®. Stefan Mangard®, The

Speculative Execution”

Werner Haas®, Mike Hamburg®,

Maryland

3 Graz University of Technology
4 Cyberus Technology
S Rambus, Cryptography Research Division
6 University of Adelaide and Dara6]

Abstract

Modern processors use branch prediction and specula-
live execution to maximize performance. For exampie, if
the destination of a branch depends on a memory value
that is in the process of being read, CPUs will try guess
the destination and attempt to execute shead. When the
memory value finally arrives, the CPU either discards or
commits the speculative computation. Speculative logic
is unfaithful in how itexecutes, can access to the victim's
memory and registers, and can perform operations with
measurable side effects

Spectre attacks involve inducing a victim to specula-
tively perform operations that would not occur during
corect program execution and which leak the victim's
confidential information via a side channel to the adver-
sary. This paper describes practical attacks that combine
methodology from side channel attacks, fault attacks,
and return-oriented programming that can read arbitrary
memory from the victim's process. More broadly, the
paper showgthat speculative execution xmp\‘nnminnn.\

uming/side-channe| attacks. These attacks repre-

a serious threat to actual sysems, since vulnerable

eculative execution capabilities are found in micropro-

cessors from Intel, AMD, and ARM that are used in bil-
lions of devices.

While makeshift Pprocessor-specific countermeasures
am possible in some cases, sound solutions will require
fixes to processor designs as well as updates to instruc-
tion set architectures (ISAs) to give hardware architects
and software developers a common understanding as to
what computation state CPU implementatioas are (and
ar not) permitted to leak.

*Afier reporting the wsutts heee, we w

ere informed that our work
Py cvertaps the rosults
T of indepenient work done a8 Google's

ttps://meltdownattack.com/ (system hosted at Graz University of Technology

1 Introduction

Computations performed by physical devices ulh?n leave
observable side effects beyond the computation’s nom-
inal outputs. Side channel attacks focus on exploit-
ing these side effects in order to extract otherwise-
unavailable secet information. Since their introduction
in the late 90's [25]. many physical effects such as power
consumption 24], electromagnetic radiation [31], or
acoustic noise [17] have been leveraged to extract cryp-
tographic keys as well as other secrets.

While physical side channel attacks can be used to
extract secret information from complex devices such
as PCs and mobike phones [15, 16], these devices face
additional threats that do not require exiernal measuw-
ment equipment because they execuke code from po-
tentially unknown origins. While some software-based
attacks exploit software vulnerabilities (such as buffer
owerflow or use-afier-free vulnerabilities) other soft-
war attacks leverage hardwam vulnersbilities in order
to keak sensitive information. Attacks of the latter type
include microarchitectural attacks exploiting cache tim-
ing [9, 30, 29, 35, 21, 36, 28). branch prediction his-
tory 7, 6]. or Branch Target Buffers [26, 11)). Softwar-
based echniques have also been used to mount fault at-

tacks that aler physical memory [22] or internal CPU
valwes [34]

Speculative execution is a technique used by high-
speed processors in order to increase performance by
guessing likely future execution paths and ;vmamm;
executing the instructions in them. For example when
the program'’s control flow depends on an uncached value
located in the physical memory, it may take several
hundred clock cycles before the vale becomes known.
Rather than wasting these cycles by idling. the processor
guesses the direction of control fiow, saves a ch‘clpc;ml
oq.h’.:h Rgiser stak, and proceeds to speculatively execute
g l:mgnm on the guessed path. When the value even-
ually arrives from memory the Pprocessor checks the cor-

https://meltdownattack.com/

Meltdown and Spectre

“*Architectural state”

a) Deduce secrets from out-of-order execution of instructions that are not
committed. (Meltdown)

b) Deduce secrets from speculative execution of instructions on paths that
are not executed (therefore instructions are not committed). (Spectre)

4

Assumptions — things change
Today’s barriers can disappear

= Separations disappear - or are not real
=" multiplexed communications can be hacked
= shared state: physical separations do not persist

= Cost to do an exploit
* in resources, money, time
= Value of secrets
 Value of available information becomes precious

= Assumptions are not always clear even when they are there

Side channel: Two steps

Ask to grab data that you are no allowed to see —in an
instruction the processor will never commit or complete
(because the processor knows that we should never see the
data).

Quickly cause a side-effect based on the data, which will
leave a detectable footprint behinds from which we can
infer something about the protected data. Warm cache line,
warm TLB entry/page table, etc.

The secret leaks though this side channel for later
inspection, even if the processor and /or operating systems
cancel the code that read data and caused the side effect.

Side channels lead to exploits

Meltdown and Spectre show the existence of “side channels.”

Side channels allow secrets to be inferred even though they are otherwise
protected (not disclosed directly).

Power Consumption
Electromagnetic Radiation
Injection of Faults
Acoustic Sounds

Just because we can see secrets, doesn't mean we know how to exploit
them (to use them for evil). Put another way: we know side channels exist,
so we need to fear exploits — and we need to close side channels.

The obvious?

Quantum and Al

United — do we know?

Claims
Warrants
then “not possible”

Chris Roberts, a US security researcher, CLAIMS that he hacked the in-flight entertainment systems on several flights and
on one flight gained access to the plane’s thrust management computer and briefly changed its course.

In a warrant application filed in April, FBI agent Mark Hurley said that Mr. Roberts made noticeable changes to the
aircraft.

“(Roberts) stated that he thereby caused one of the airplane engines to climb resulting in a lateral or sideways movement
of the plane during one of these flights,” he wrote.

The document states that Roberts claimed to have compromised the in-flight entertainment systems of around 20 flights
in the past four years. He achieved this by connecting his laptop to the electronics box under his seat after prying it open.

Operation Fortitude

V)
Y
C
q)
_l
@
O
(O
4~
©
(.
=

What will you do to make things useful, safe, and
make both qualities last?

THE TRUTH 15 00 ==_ 2

A

T8 6 (¥ £ 1L ES

More importantly: what are we NOT thinking about
today, that we will be able to exploit in two decades?

I
|
|

ﬂ

T8 6 (¥ £ 1L ES

	The Intersection of Staying�Secure with Full Speed Ahead
	Slide Number 3
	Slide Number 4
	Physical Separation
	Slide Number 6
	Slide Number 7
	Slide Number 8
	What is secure?
	OpenSSL
	OpenSSL
	OpenSSL
	Slide Number 13
	Slide Number 14
	Meltdown and Spectre�
	Assumptions – things change�Today’s barriers can disappear�
	Side channel: Two steps
	Side channels lead to exploits
	The obvious?�Quantum and AI
	United – do we know?��Claims�Warrants�then “not possible”
	Operation Fortitude
	Inflatable Tanks
	What will you do to make things useful, safe, and make both qualities last? �
	More importantly: what are we NOT thinking about today, that we will be able to exploit in two decades?�

