

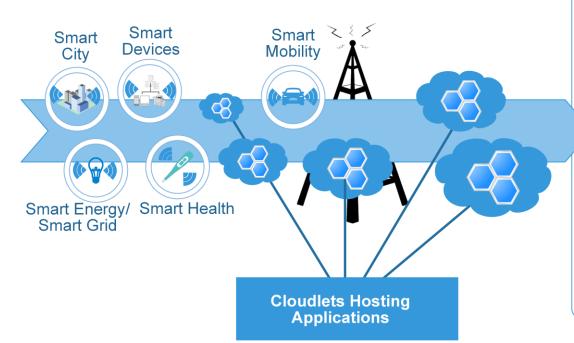
Content

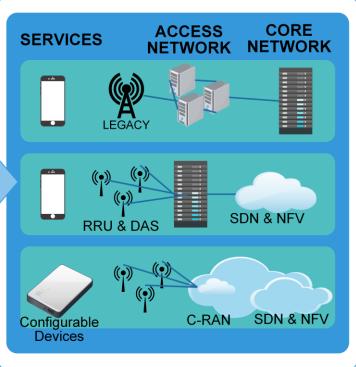
- Security of 5G
 - Security: A brief history of cellular networks
 - New technologies in 5G and related security consequences
- Security in the times of 6G
 - 6G Roadmap
 - What will 6G be?
 - Roadmap of 6G security
- Concluding remarks
- Selected References

Security of 5G

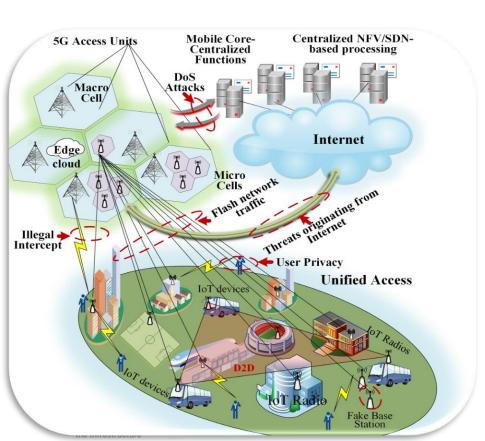
Security: A brief history of cellular networks

	0 1 1 1 1	0 1 0 1
Network	Security Mechanisms	Security Challenges
1G	No explicit security and	Eavesdropping, call intercep-
	privacy measures.	tion, and no privacy mecha-
		nisms.
2G	Authentication,	Fake base station, radio link
	anonymity and	security, one way authentica-
	encryption-based	tion, and spamming.
	protection.	
3G	Adopted the 2G secu-	IP traffic security vulnerabili-
	rity, secure access to net-	ties, encryption keys security,
	work, introduced Authen-	roaming security.
	tication and Key Agree-	
	ment (AKA) and two way	
	authentication.	
4G	Introduced new	Increased IP traffic induced
	encryption (EPS-AKA)	security, e.g. DoS attacks, data
	and trust mechanisms,	integrity, Base Transceiver
	encryption keys security,	Stations (BTS) security, and
	non-3G Partnership	eavesdroping on long term
	Project (3GPP) access	keys. Not suitable for security
	security, and integrity	of new services and devices,
	protection.	e.g. massive IoT, foreseen in
		5G.

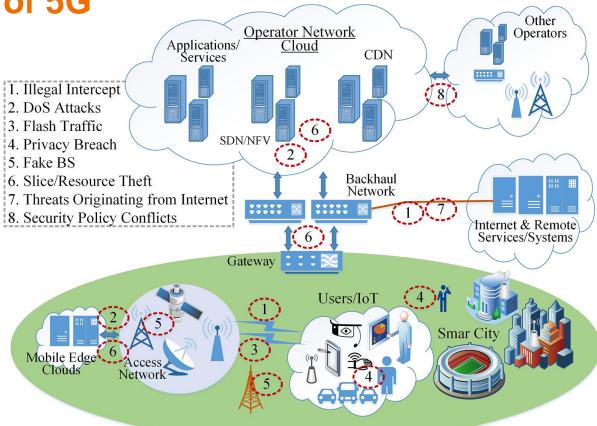

- Wireless networks have been prone to security threats, such as:
 - 1G: prone to illegal cloning and masquerading.
 - 2G: prone to message spamming and unwanted broadcasting.
 - 3G: open to Internet security vulnerabilities.
 - 4G: further migrated Internet security threats with increased speed.
 - 5G: can open our lives to security vulnerabilities in the form of IoT, critical infrastructures, health, and even our private lives:-privacy.



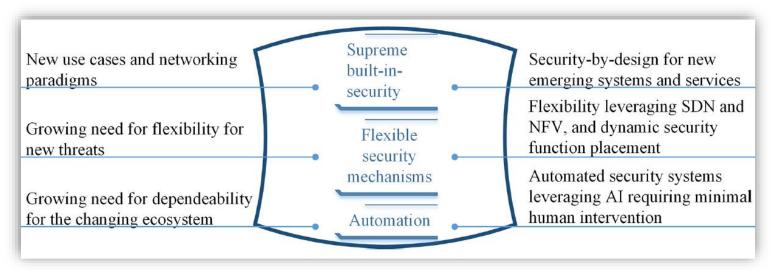
New technologies introduced in 5G

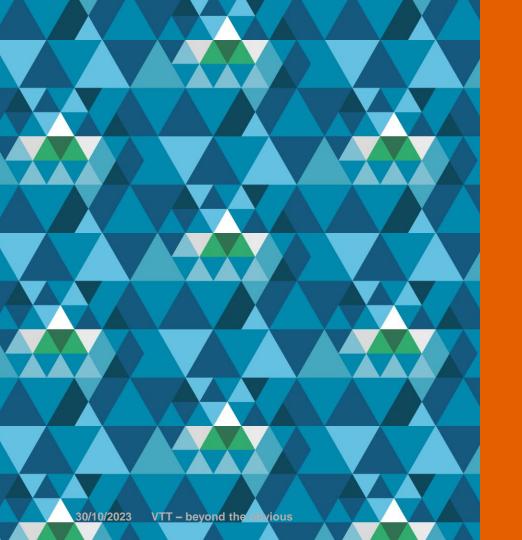

- Cloudification
- Softwarization
- Virtualization

Mechanisms for the integration of IoT, etc.


Resulting security challenges

- Clouds: Maintaining important network control entities, user information in shared environments.
- SDN: Centralized control, open interfaces & third-party applications, control channel fingerprinting, and data plane dependability.
- Virtualization: Slice creation/sharing, VNF configurations, and hypervisor's centralized control.
- IoT: Flash network traffic or signaling storms, fingerprinting a compromised node (firmware implementation).


Security of 5G



Security of 5G

- Modular, technology and service-based solutions, mainly driven by the 3GPP.
- It can be claimed that 5G, as a connectivity infrastructure, is the most secure compared to the previous generations.

Security in the times of 6G

Roadmap of 6G

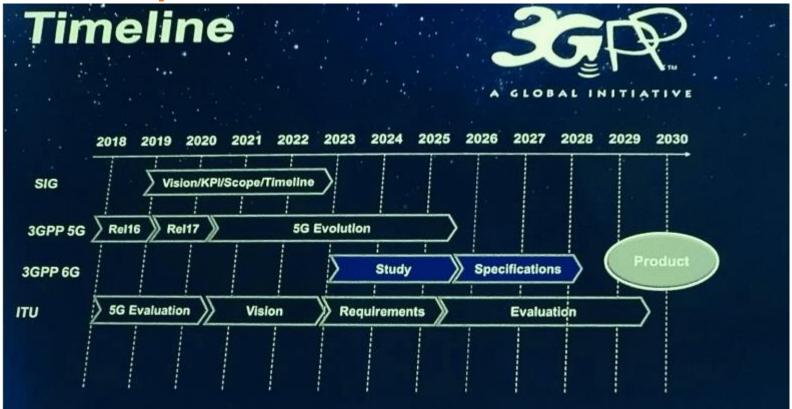


Figure source: 3GPP

What will be 6G?

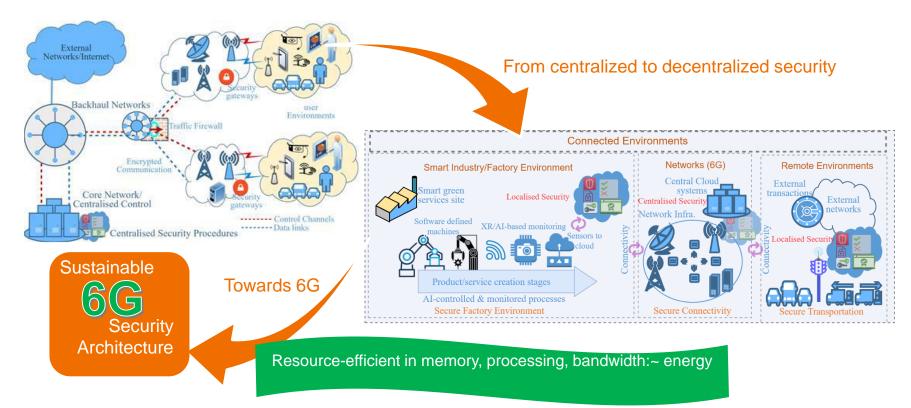
6G should

- contribute to an efficient, human-friendly and sustainable society through ever-present intelligent communication,
- enable new applications (XR, industrial systems connectivity) through new technologies (terahertz).

6G needs

- to be highly distributed and decentralized in nature, much like a mesh of self-organized autonomous networks working in unison.
- each self-organizing autonomous network will have network control in its own physical vicinity.
- therefore, have localized security policies, procedures, and technologies to maintain the independent working status of the local network.

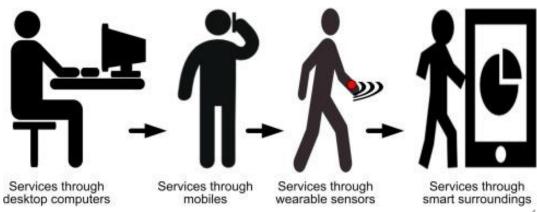
What will be 6G?...


- However, there are several limitations in the existing or evolving architectures:
 - The existing systems, such as the 3GPP-based network architecture is highly centralized,
 - It will be challenging to meet the strict requirement of future services, such as latency (physical limitations, such as speed of microwave),

$$t = \frac{50km}{c} = \frac{50 \times 3}{3.0 \times 10^8 m/s} \approx 0.17ms$$

- There is a need of sustainable solutions, see, the 5G new radio consumes less energy per gigabyte compared to the 4G standards, but the increased number of devices use a combined high amount of energy.
- Hence, distributed and decentralized, and sustainable network control and security policies, procedures, and technologies must be developed.

Roadmap of 6G security

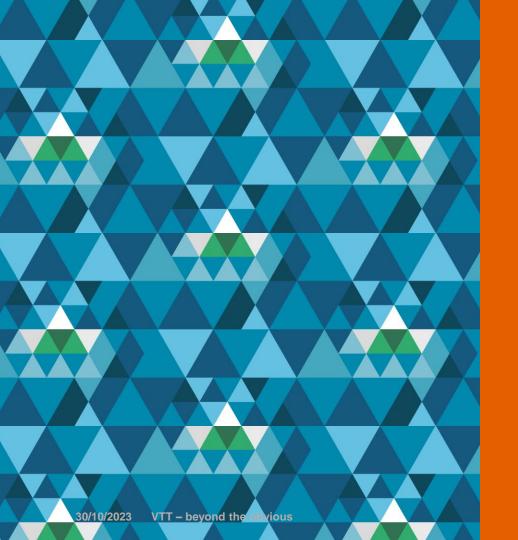


Security of 6G

- The security architecture should be
 - Distributed in nature to meet the requirements, e.g., latency, of future services, such as authentication of moving vehicles, industrial systems,
 - Secure the network from the threats of AI, including inadvertent weaknesses and threats, such as using non-integrity verified data,
 - Secure all resources from the threats posed by quantum computing.
- Security systems need to be sustainable
 - Emerging solutions based on Al will consume huge amounts of computing, memory, transceiver, spectrum, and energy resources,
 - Distributed ledger technologies (DLTs) provide opportunity for security in untrusted environments, however, use huge amounts of resources,
 - Centralization cost resources, e.g., time and spectrum.

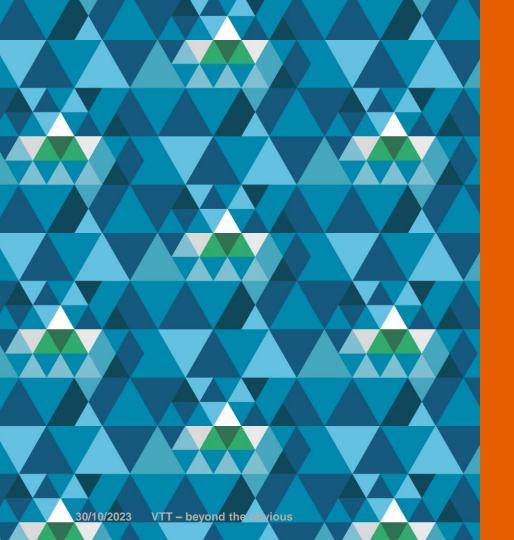
Concluding remarks

- 6G will provide ubiquitous connectivity with ubiquitous security that needs;
 - the definition of omni-present security, that require
 - the defintion of distributed security architecture, which
 - must be sustainable by design, that require
 - the difinition of sustainable security, and KPIs and KVIs for sustainable security.
- Hence, the immediate and most interesting research challenge we are facing is defining the potential security architecture that will fullfill the above needs.



Important References

- I. Ahmad, S. Shahabuddin, T. Kumar, J. Okwuibe, A. Gurtov and M. Ylianttila, "Security for 5G and Beyond," in *IEEE Communications Surveys & Tutorials*, vol. 21, no. 4, pp. 3682-3722, Fourthquarter 2019. <u>Link</u>
- 2. I. Ahmad, T. Kumar, M. Liyanage, J. Okwuibe, M. Ylianttila and A. Gurtov, "Overview of 5G Security Challenges and Solutions," in *IEEE Communications Standards Magazine*, vol. 2, no. 1, pp. 36-43, MARCH 2018. Link
- 3. Liyanage, Madhusanka, Ahmad, Ijaz, et al., eds. A Comprehensive Guide to 5G Security. John Wiley & Sons, 2018.
- 4. Porambage, P., Gür, G., Osorio, D. P. M., Liyanage, M., Gurtov, A., & Ylianttila, M. (2021). The roadmap to 6G security and privacy. *IEEE Open Journal of the Communications Society*, 2, 1094-1122.
- Nguyen, Van-Linh, Po-Ching Lin, Bo-Chao Cheng, Ren-Hung Hwang, and Ying-Dar Lin. "Security and privacy for 6G: A survey on prospective technologies and challenges." *IEEE Communications Surveys & Tutorials* 23, no. 4 (2021): 2384-2428.
- Wang, Minghao, Tianqing Zhu, Tao Zhang, Jun Zhang, Shui Yu, and Wanlei Zhou. "Security and privacy in 6G networks: New areas and new challenges." *Digital Communications and Networks* 6, no. 3 (2020): 281-291.


10/30/2023

Questions?

Thank you!

bey Ond the obvious

Ijaz Ahmad Ijaz.ahmad@vtt.fi +358 404865746 @VTTFinland @your_account

www.vtt.fi