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Pacific

Northwest  Changing nature of grid

Move towards 100% renewable penetration

Inverter-based interfaces (Grid forming/grid following inverters)

Deployment of distributed generation, storage, flexible load technologies
Increased visibility (PMU, AMI, ...)
Climate change and increase in number of disruptions
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% System challenges in clean energy and

Pacific

Northwest  cdecarbonization

« System trends

US Electricity Generation Projection = 3.5X projected capacity increase from
O O 2020

» Expected retirement of conventional
generation sources

» System challenges
--------------------------------------------------- * |Increased uncertainty

» Low-inertia systems with IBRs
= Power electronics heavy

2020 Ref.  Decarb Decarb+E Ref.  Decarb Decarb+E ° Mode“ng and S|mu|at|on Cha”enges
2035 2050
Credit: DOE EERE SETO Solar Futures Study 2021. »= Large number of scenarios

» Larger/more complex EMT system model
= Slow simulation speed




o

Pacific .

Northwest  Challenges for analysis tools

* Transmission + distribution

* Handling variability, intermittency, and stochasticity

* Need of faster-scale dynamics (EMT)

« Computational challenges and longer simulation times
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— \%/ High-performance open power grid analysis tools

Pacific

Northwest (@ PNNL

 Rich history in development of open-source high-performance tools for grid
analysis

* Close linkage with DOE ASCR scientific computing tools

PNNL tools ASCR tools

BRI co-simuiation APl
ExaGO Economic dispatch
@ @
oy [GAGPAGKTTT] [WPPOJseue <PETSc Al
C )

I I I I I I I I I I I I I I I I I I SuperLU
106 103 0 3 108
1 1 GlobalArrays

microsecond millisecond second minute hour day




AAAAAAAAAAAAAAAAAA

Sraneo

Distribution system analysis

Power flow, time-series analysis,
and dynamics

Detailed models of end-use loads

Assess distribution automation
design, peak load management,
distribution generation and
storage, rate structure analysis,
etc.

https://www.gridlabd.org/

Open-source software @ PNNL

HELICS

« Co-simulation framework to
integrate simulators

* Developed jointly by several
national labs

* Transmission-distribution analysis,
grid-communications system, gas-
electric grid interdependency,
large-scale DER market
interactions

https://helics.orqg/



https://www.gridlabd.org/
https://helics.org/

Pacific
Northwest  OQpen-source software @ PNNL
PO— — L bloel
Analytics & Integration Advanced Algorithms
MIS<>
HIPPO
* Accelerate day-ahead SCUC » High-performance framework for

application development

* Interface with state-of-the-art open
source numerical solvers

* Power flow, state estimation,
contingency analysis, and
dynamics

* High-performance computing

« Advanced algorithms for solving
mixed-integer problems

* Close collaboration with MISO

HIPPO info https://www.gridpack.org/



https://www.ferc.gov/sites/default/files/2020-06/T3-1_Pan_et_al_0.pdf
https://www.gridpack.org/wiki/index.php/Main_Page

Pacific

Northwest  New additions to GridPACK

» High-performance dynamics simulation of wind-heavy systems

Dynamic security assessment for

. e HPC-enabled EMT simulation engine
uncertainty quantification

Smart Sampling + C-PAGE GridPACK-Wind 2"d level partition

DS ,
(Base case)

1Aty At, |7

Forecasts/
Uncertainty

Topological subsystem

AT >> At;

Smart
Sampling

Post-
processing

A,

Y I

Aty

15t level partition

CA for [
S0k 1tlevel (task) 2™ level (DSA
parallelization  parallelization

| [e— (a) A two-level partitioning scheme (b) multi-rate EMT simulation

. h to different contingencies




Pacific

Northwest  Wind integration modeling in GridPACK

 Validated detailed models of wind turbines with complex power electronics
 WECC generic models plus grid forming inverter model

Wind plant models WECC generic models++
2 Typed A

— GDFORM
e o [ t?‘i ' REGCB1

REGCC1

Type-4 B
REECD1
I
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Pacific

Nortwest  Wind Integration simulation with GridPACK

NATIONAL LABORATORY
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%/ Exascale Grid Optimization (ExaGO) toolkit

Uncertainty

Pacific
Northwest sv:‘:::::f /" Grid Optimization 6ecisions & Analysg
- | % + Detailed AC models ]
» Open-source software tool for large- [0 s G wﬁ | _
scale ACOPF optimization with ey | | Fiim e || | ot I Time
. . . - k@ 9 + DERand storage ;‘ll& &n. f’ I

= Renewable integration (uncertainty) AL R

= Qutages (security) = | G m’” Security /.

= Scheduling (time) N ) =

e PV/PQ switching

e Automatic
governor control

e Ramp up/down
signals

» High-performance heterogenous
(CPU-GPU) computing g

x> 0.

e Line flow limits
¢ Voltage limits

e Bus power
balance

e Multi-objective
Advanced o Initialization

ExaGO ¢ Quadratic costs Standard

« (Exa)scalable algorithms v

‘ goHiOp: Primal decomposition MPI optimization engine ‘

« Software sustainability/adoption TRY X YRR ¥ Y o+ 1

o " o * Storage
o e Hiop . Reser%/es
A Ry (x) = mi 3 Ry(x) = mi 3 Ruy(x) = mi 3

u P th O n P I T A o Al e o) ¢ Flexible demand e Load

st gi(@.y) = by, st ga(a,y2) = by, st gn (@) = by, « Piecewise costs curtailment

2> 0. >0. yn 20.
I ExaGO . ExaGO & ExaGO : e PSSE input ® Bus power
. imbalance
u VI S U a I frO n t_e n d fitey)  gxy) fo(xy2)  g2(%.y2) fu@yn)  gn@yn) . ﬁ;fltt ;onstralnt
AN AN D
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Exascale Grid Optimization (ExaGO™) toolkit

Pacific
Northwest
(" Scenarios \ / Grid Optimization \ @cisions &Analys@

Wind Toolkit

+ Detailed AC models

* Massively parallel (GPUs)

* Multiperiod-multi scenario
optimization

* N+ contingency consideration
* Frequency response

* DER and storage

g Prs

Sa

Optimal DER scheduling
sliel)

Download:

https://gitlab.pnnl.gov/exasgd/framewo

rks/exaqo

» Large-scale ACOPF-based grid
optimization

* Planning, reliability, and resiliency
analysis

* Incorporate stochastic (wind
forecast, load variations), security
(contingencies), and multi-period
(ramping) constraints

» High-performance solvers
 CPU and mixed CPU-GPU


https://gitlab.pnnl.gov/exasgd/frameworks/exago
https://gitlab.pnnl.gov/exasgd/frameworks/exago
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Nertwest  ExaGO AC Optimal Power Flow (OPFLOW)

NATIONAL LABORATORY

* Implements nonlinear AC optimal power min f(z)
flow
S.t.
* Models: Power-balance-polar, power- () = 0
. €XT p—
balance-cartesian, GPU-based ones g
h(x) <0
e PV/PQ switchi -
e Line flow limits { . AUtom:nl;C e T < T < x"‘
e Voltage limits governor control
* Bus power e Ramp up/down
balance signals
e Quadratic costs Standard e Multi-objective
ACOPE Advanced e Initialization
Solver Model
g Storage - ~ il e Power-balance Polar
e Reserves Feasibility e HiOP e Power-balance
e Flexible demand * Load I Cartesian
e Pj i curtailment . .
) E;e;:m':jtcosm « Bus power e GPU implementation
¢ Soft constraint imbalance )
limits

15



e \?7/ ExaGO multi-period optimal power flow

Pacific

Northwest  (TCOPFLOW)
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% ExaGO security-constrained optimal power flow

Pacific

Northwest  (SCOPFLOW)

« Secure operation under
contingencies s

: ge(ze) =0, ce0,N, —1]

* “ What should be the dispatch such he(ze) < 0, cel0,N, - 1]
that if any of the contingencies do 1~ <z <zt c€0,N, - 1]
occur then the system will be 0y < @e =m0 < 0, c€l,N.~1
secure” How .

min f(w)+§Ri($)
Rank 0 st o) = b,
x> 0.
C1 ExaGO
f@)  go(®)
L R@R@. Ry @)
goHiOp: Primal decomposition MPI optimization engine
Co C9 Rank1 x4} 1} R,(x) Rank2 x4 {1 R RankN x4} {r Ry
HiOp HiOp HiOp
Ry(z) =min fi(z,91) Ry(2) = min fa(a,y2) Ry() = min fy(z,yn)
s.t. gi(z,y) = b, s.t. ga(z,y2) = ba, s.t. gn(z,yn) = by,
y1 > 0. y2 > 0. yn 2 0.
C3 ExaGO ExaGO ExaGO
fiy)  gi(ayn) f(6y2)  g2(%y2) fuyn)  gn(xyw)
@ @ @
PowerScenarios PowerScenarios PowerScenarios




7 ExaGO Stochastic Security-Constrained Optimal

Pacific
Northwest  Power Flow (SOPFLOW) min S 7S foe(@a)
SES ceC
_ _ _ s.t.
* Secure operation under contingencies Geo(@as) = 0
and wind forecasts Bael(s ) <0,
* “What should be the dispatch such T < wg.<at,
that if any of the contingencies in any Az, < o0 — 200 < A,
of the wind forecast scenarios do occur Az, < g0 — 00 < Ao
then the system will be secure”
SoC1 6x 107 \
e Largest run on Summit with 10
S0€2 ¢ \ scenarios and 1000
: AN contingencies on TAMU 2k case
50C1 on 1920 ranks.
h Credits: Jingyi Wang (LLNL)

S0C2 5
number of MPI ranks
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NATIONAL LABORATORY

Northwest Landscape of Solution Methods

More domain
knowledge

Online optimization Differential equations Supervised Learning Reinforcement Learning
. N min Zr(x, o)
min f(z) dy o K Z i i ° =
. v E - f(III) mgn N L(y ’ f(il? " 0)) s.t. Bellman(x,©) = 0,
subject to b(:L') >0 =1 environment(x,0) =0
c(z) =0 X€E
y, Simplelinear model Polynomial model //_ ~enpaey
A YA ,’ Policy Reward/Response
%y‘bﬁ'bm ,/%éwazx# {”
X X
* Requires prior knowledge + Requires prior knowledge * Requires large labeled * Requires environment
datasets model to sample

Less domain
knowledge
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racific « Data-driven Modeling

NATIONAL LABORATORY

§

White-box Gray-box Black Box f l .

D — By X _ e — 075xy f .l_° 1- - ;._,ll.IH e 1 -

dt dt dX o Boab
y_ Y _ v || = N®OL Ll ] RFE

ac T dt e i -

More domain > Less domain
knowledge . physics-based - networked neural ODEs . neural differential equations Knowledge
* physics priors « graph neural networks « state space models

\

N
df" — —>
| 2 S = NN 00 + ) Ay NN (%, 5 65)
=

20
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Pacific

Northwest Landscape of Solution Tools

AAAAAAAAAAAAAAAAAA

Online optimization Differential Equations Supervised Learning Reinforcement Learning

3,
o 'y O PyTorch
é J U M P DifferentialEquations.jl

1F TensorFlow

CVXPY
() CasADI =PETSc LuTAO

GUROBI u NWCHEM

More domain Less domain
knowledge knowledge
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Pacific

Northwest Landscape of Solution Tools

AAAAAAAAAAAAAAAAAA

Online optimization Differential Equations Supervised Learning Reinforcement Learning

Vevomo 8 O PyTorch

DifferentialEquations.jl

1F TensorFlow

=PETSc 4uTAO

GUROBI u NWCHEM

What comes next? ... Differentiable programming (DP): a unifying approach for data-
driven modeling and optimization of complex systems based on automatic differentiation (AD)
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Pacific

Northwest  NeuroMANCER

Open-source scientific machine learning (SciML)
toolbox in PyTorch for integrating deep learning,
constrained optimization, and physics-based modeling

Rosenbrock problem

 Differentiable constrained optimization
» Parametric nonlinear programs (pNLP)
« Constrained machine learning

= Classical deep learning (RNN, MLP, ResNet)
= Graph neural nets (GNNSs)

* Physics-informed modeling of dynamic systems 10
* Neural state space models (NSSM) 08
* Neural ordinary differential equations (NODE)

—— IPOPT

0.6

0.4

« Constrained control of dynamic systems 02
= Differentiable predictive control (DPC) 00

-0.2

https://github.com/pnnl/neurom
a n Ce r -0.2 0.0 0.2 0.4 % 0.6 0.8 1.0 1.2

X1



https://github.com/pnnl/neuromancer
https://github.com/pnnl/neuromancer

— < Dynamics-Aware Economic Redispatch via

Pacific . . r
Northwest  Differentiable Predictive Control
Power system network Dynamics-aware Economic Dispatch Differentiable Predictive Control (DED-DPC 16 ! | /" _p,
8 6 £ R —P
Y

O+ | L <+O Koopman Model of the Power System Parametrized Closed-loop dynamics =14

P C 7 . 2 . ] ' ) B
5 5 | \ MPC loss fanction]  forward propagation 51_27 / /

N backward propagation

Yin Y1 ib i B 1: // / 7
_ i i g N y N 0.8 - ! ! ! -
6” : / \edgic @9 @ 0 10 20 30 40 50 60
— {3l W e e e e
"',:' ‘n“. . ':: > :«‘ ‘ ‘

p \N’\ 4 j / System model Neural control law
@ \/\/\ 1, Learn the Koopman operator 2, Learn explicit neural control law
time series dataset G v,

Problem: Current redispatch processes do not incorporate oo B g Y 0 ®
system dynamics concerns. Incorporating dynamics in _

redispatch is too complex and/or time-consumin Architectures

p_ _ P _ _ g « Koopman dynamics model

Solution: Machine-learning based dynamics-aware « CNN control policy

redispatch. Learn system dynamics for faster assessment. Results

Ethan King, Jan Drgona, Aaron Tuor, Shrirang Abhyankar, Craig Bakker, Arnab * 5 orders of magnitude speed-up
| ’ y u y | y , | , . .
Bhattacharya, Draguna Vrabie, Koopman-based Differentiable Predictive Control for Near optimal performance

the Dynamics-Aware Economic Dispatch Problem, 2022 American Control Conference 24
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7 PNNL open-source tools for grid modeling,

Pacific

Northwest  gsimulation, and learning

 GridLab-D
= https://qithub.com/gridlab-d/gridlab-d

HELICS (co-developed with other national labs)
= https://github.com/GMLC-TDC/HELICS

GridPACK
= https://github.com/GridOPTICS/GridPACK

ExaGO

= https://qitlab.pnnl.gov/exasqgd/frameworks/exaqgo

NeuroMancer
= https://github.com/pnnl/neuromancer

25


https://github.com/gridlab-d/gridlab-d
https://github.com/GMLC-TDC/HELICS
https://github.com/GridOPTICS/GridPACK
https://gitlab.pnnl.gov/exasgd/frameworks/exago
https://github.com/pnnl/neuromancer
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Pacific

Northwest  Future outlook and needs for grid analysis tools

* Deeper penetration of IBRs will require larger emphasis on EMT analysis

* Handling increased variability with large-scale renewable deployment —
deterministic to stochastic

 Additional considerations for reliability and resiliency analysis

« Computer architecture keeps on changing — CPUs, GPUs, Quantum
computers, ...

* Al/machine learning tools will be a key!

27



