

Open-source highperformance tools for grid modeling, simulation, and learning @ PNNL

March 23, 2023

Shrirang Abhyankar

Electricity Infrastructure and Buildings Division Pacific Northwest National Laboratory

PNNL is operated by Battelle for the U.S. Department of Energy

DOE's 17 national laboratories tackle critical scientific challenges

A regional, national, and international scientific resource

Changing nature of grid

- Move towards 100% renewable penetration
- Inverter-based interfaces (Grid forming/grid following inverters)
- Deployment of distributed generation, storage, flexible load technologies
- Increased visibility (PMU, AMI, ...)
- Climate change and increase in number of disruptions

s) chnologies

System challenges in clean energy and decarbonization

Credit: DOE EERE SETO Solar Futures Study 2021.

- System trends
 - 3.5X projected capacity increase from 2020
 - Expected retirement of conventional generation sources
- System challenges
 - Increased uncertainty
 - Low-inertia systems with IBRs
 - Power electronics heavy
- Modeling and simulation challenges
 - Large number of scenarios
 - Larger/more complex EMT system model
 - Slow simulation speed

Challenges for analysis tools

- Transmission + distribution
- Handling variability, intermittency, and stochasticity
- Need of faster-scale dynamics (EMT)
- Computational challenges and longer simulation times

6

High-performance open power grid analysis tools @ PNNL

- Rich history in development of open-source high-performance tools for grid analysis
- Close linkage with DOE ASCR scientific computing tools

PNNL tools

ASCR tools

Open-source software @ **PNNL**

- Distribution system analysis
- Power flow, time-series analysis, and dynamics
- Detailed models of end-use loads
- Assess distribution automation design, peak load management, distribution generation and storage, rate structure analysis, etc.

- Co-simulation framework to integrate simulators
- Developed jointly by several national labs
- Transmission-distribution analysis, grid-communications system, gaselectric grid interdependency, large-scale DER market interactions

https://helics.org/

https://www.gridlabd.org/

Open-source software @ PNNL

optimization solvers ACday-ahead market operation high performance computing

- Mixed integer programming data analytic vertical integrated software design analysis flow • Hic
- Ad

Ig

mixed-integer problems

HIPPO info

- High-performance framework for application development
- Interface with state-of-the-art open source numerical solvers

, state estimation, conungency analysis, and dynamics

https://www.gridpack.org/

New additions to GridPACK

High-performance dynamics simulation of wind-heavy systems

Dynamic security assessment for uncertainty quantification

HPC-enabled EMT simulation engine

Wind integration modeling in GridPACK

- Validated detailed models of wind turbines with complex power electronics
- WECC generic models plus grid forming inverter model

Wind plant models

WECC generic models++

Wind Integration simulation with GridPACK

(nd) ∞∇

• Validation, comparison, and analysis

Exascale Grid Optimization (ExaGO) toolkit

Pacific Northwest

- Open-source software tool for largescale ACOPF optimization with
 - Renewable integration (uncertainty)
 - Outages (security)
 - Scheduling (time)
- High-performance heteroge (CPU-GPU) computing
- (Exa)scalable algorithms
- Software sustainability/adop
 - Python API
 - Visual front-end

Exascale Grid Optimization (ExaGO[™]) toolkit

- Large-scale ACOPF-based grid optimization
- Planning, reliability, and resiliency analysis
- Incorporate stochastic (wind forecast, load variations), security (contingencies), and multi-period (ramping) constraints
- High-performance solvers
- CPU and mixed CPU-GPU

Download: https://gitlab.pnnl.gov/exasgd/framewo rks/exago

ExaGO AC Optimal Power Flow (OPFLOW)

Solver

• IPOPT

• HiOP

- Implements nonlinear AC optimal power flow
- Models: Power-balance-polar, powerbalance-cartesian, GPU-based ones

- Power-balance Polar
- Power-balance Cartesian
- GPU implementation

ExaGO multi-period optimal power flow (TCOPFLOW) $N_t - 1$

- For economic dispatch problems over a given time horizon
- Multiperiod constraints (generator ramping)

ExaGO security-constrained optimal power flow (SCOPFLOW)

- Secure operation under contingencies
- "What should be the dispatch such that if any of the contingencies do occur then the system will be secure"

$\min. \sum_{c=0}^{N_c-1} f_c(x_c)$	
s.t.	
$g_c(x_c) = 0,$	
$h_c(x_c) \le 0,$	
$x^- \le x_c \le x^+,$	
$-\delta_x \le x_c - x_0 \le \delta_x,$	

$$c \in [0, N_c - 1]$$

 $c \in [0, N_c - 1]$
 $c \in [0, N_c - 1]$
 $c \in [1, N_c - 1]$

Pacific Northwest

ExaGO Stochastic Security-Constrained Optimal Power Flow (SOPFLOW) min $\sum \pi_s \sum f_{sc}(x_{s,c})$

- Secure operation under contingencies and wind forecasts
- "What should be the dispatch such that if any of the contingencies in any of the wind forecast scenarios do occur then the system will be secure"

Largest run on Summit with 10 scenarios and 1000 contingencies on TAMU 2k case on 1920 ranks. Credits: Jingyi Wang (LLNL)

Landscape of Solution Methods

Online optimization

f(x) \min $b(x) \geq 0$ subject to c(x) = 0.

Requires prior knowledge

 \mathcal{P}

Differential equations

Requires prior knowledge •

Supervised Learning

Requires large labeled datasets

More domain knowledge

Less domain knowledge

Reinforcement Learning

Requires environment model to sample

More domain knowledge.

Pacific

Northwest

physics-based networked neural ODEs

- physics priors
- graph neural networks •
- neural differential equations •
 - state space models

Landscape of Solution Tools

More domain knowledge

Less domain knowledge

Reinforcement Learning

Landscape of Solution Tools

What comes next? ... Differentiable programming (DP): a unifying approach for datadriven modeling and optimization of complex systems based on automatic differentiation (AD)

Reinforcement Learning

NeuroMANCER

Open-source scientific machine learning (SciML) toolbox in PyTorch for integrating deep learning, constrained optimization, and physics-based modeling

- Differentiable constrained optimization
 - Parametric nonlinear programs (pNLP)
- Constrained machine learning
 - Classical deep learning (RNN, MLP, ResNet)
 - Graph neural nets (GNNs)
- Physics-informed modeling of dynamic systems
 - Neural state space models (NSSM)
 - Neural ordinary differential equations (NODE)
- Constrained control of dynamic systems
 - Differentiable predictive control (DPC)

https://github.com/pnnl/neurom ancer

Rosenbrock problem

Dynamics-Aware Economic Redispatch via Differentiable Predictive Control

Problem: Current redispatch processes do not incorporate system dynamics concerns. Incorporating dynamics in redispatch is too complex and/or time-consuming **Solution**: Machine-learning based dynamics-aware redispatch. Learn system dynamics for faster assessment.

Pacific

Northwest

Architectures

10

Results

5 orders of magnitude speed-up Near optimal performance

Koopman dynamics model CNN control policy

PNNL open-source tools for grid modeling, simulation, and learning

- GridLab-D
 - https://github.com/gridlab-d/gridlab-d
- HELICS (co-developed with other national labs)
 - https://github.com/GMLC-TDC/HELICS
- GridPACK
 - https://github.com/GridOPTICS/GridPACK
- ExaGO
 - https://gitlab.pnnl.gov/exasgd/frameworks/exago
- NeuroMancer
 - https://github.com/pnnl/neuromancer

Thank you

Future outlook and needs for grid analysis tools

- Deeper penetration of IBRs will require larger emphasis on **EMT** analysis
- Handling increased variability with large-scale renewable deployment deterministic to stochastic
- Additional considerations for reliability and resiliency analysis
- Computer architecture keeps on changing CPUs, GPUs, Quantum computers, ...
- Al/machine learning tools will be a key!