EARTH SCIENCES

Thursday, 29 April

1:00 pm Provisional Palynological Recognition of the Fern Spike at the Cretaceous Tertiary Boundary, Makoshika State Park, Dawson County, Montana
 Timothy J Kroeger*, UND, Joseph H Hartman and Wesley D Peck, EERC, Grand Forks 58202

1:20 pm Paleocene Stratigraphy of the Nesson Anticline: Placement of the Bullion Creek-Sentinel Butte Formational Contact, Williams and McKenzie Counties, North Dakota
 Joseph H Hartman, Wesley D Peck*, EERC, Grand Forks 58202, and Allen J Kihm, MinSU, Minot 58701

1:40 pm A Diverse Assemblage of Paleocene Nonmarine Mollusks and Mammals from the Sentinel Butte Formation of North Dakota
 Joseph H Hartman*, EERC, Grand Forks 58202, Barry Roth, Museum of Paleontology, University of California, Berkeley, 94720 and Allen J Kihm, MinSU, Minot 58701

2:00 pm Evolution of Drainage Networks: Western United States
 Eric Clausen*, MinSU, Minot 58701

SOCIAL SCIENCES

Thursday, 29 April

3:00 pm The Influence of Spatial Structure of Geographic Divisions on Migration Rates
 Mohammad Hemmazi*, UND, Grand Forks 58202

3:20 pm Spatial and Temporal Consistency in the Determinants of North Dakota's In-migration Rates
 Mohammad Hemmazi and Devon Hansen*, UND, Grand Forks 58202
PROVISIONAL PALYNOCOLOGICAL RECOGNITION OF THE FERN SPIKE AT THE CRETACEOUS-TERTIARY BOUNDARY, MAKOSHKA STATE PARK, DAWSON COUNTY, MONTANA

Timothy J. Kroeger*, Joseph H. Hartman*, Wesley D. Peck*

*Department of Geology and Geological Engineering, University of North Dakota, Grand Forks, ND 58202

The palynological Cretaceous-Tertiary (K/T) boundary has been located at two sites in Makoshka State Park near Glendive, Montana. At both sites, the stratigraphic level of the boundary approximates the contact between the Hell Creek and Tullock Formations.

Several palynomorph taxa, diagnostic of the Upper Cretaceous, undergo extinction at or below the K/T boundary. None of these taxa are common in the uppermost Cretaceous strata, as their sum does not exceed 3 ± 1% of the identified palynomorph total for samples lying near the K/T boundary. Diagnostic angiosperm taxa include several species of Aguilapollenites (sensu Tschudy and Leopold [1]), including A. quadrirruetaceus, A. amplus, A. delicatus var. collaris, A. reductus, and A. n. sp. (2). Other angiosperm taxa suffering extinction include Liliadites complexus, Tricolpites microreticulatus, Proteacoidites spp., Cranwellia rumseyensis, Siderogamites pilatus, and Libopollis jenseni. The fungal thallus Trichopelinites sp. and the spores Foraminisporis undulatus and Concavissimisporities cf. C. variverrucatus survive the Cretaceous, but undergo severe reduction or extinction within basal Tertiary strata.

One of the sites (M4770) was sampled across the boundary in 5-cm sampling intervals. The basal Tertiary sample from this site bears an anomalous abundance of fern spores, totaling 94 ± 2% of the palynomorphs (excluding megaspores and fungal and algal taxa) (Figure 1). The fern spore assemblage has relatively low diversity and is dominated by Laevigatosporites sp. (52 ± 3%) and Reticoledosporites dentatus (29 ± 3%). At least seven other fern spore species are present in addition to algal and fungal spores and fragments of Azolla spp. megaspores. All of the fern spore taxa are also present in samples from the underlying Cretaceous rocks. The sum of angiosperm and gymnosperm pollen is 6 ± 2% of the identified grains, an unusually low incidence. The fern spore spike is not coincident with a lithologic change as the two uppermost Cretaceous samples and the fern spike sample occur within a black brown mudstone containing no obvious lithologic breaks (Figure 1, Unit 3). The "boundary claystone" (3) is apparently not present in the section. An abundance of algal palynomorphs and Azolla spp. suggest an aquatic setting for deposition of the mudstone.

In the three Tertiary samples collected within 15 cm above the fern spore spike, palynomorph assemblages begin to regain diversity, although relatively few taxa tend to dominate the assemblages. Dominant taxa in these assemblages include spores of the Sphagnumae (Sterilestites spp.), pollen of the Taxodiaceae-Cupressaceae-Taxaceae complex, and the angiosperm pollen Convolvulites cf. R. globosus, and Retiroclitices crassus. Change to these palynomorph assemblages is coincident with a lithologic change from mudstone to coal (Figure 1, Unit 4), and in part represent an ecologic change to a swamp-forest plant community. Although detailed systematic studies of the palynomorphs have not been completed, no taxa have yet been discovered that were introduced in basal Tertiary strata.

Similar fern spore spikes immediately above the K/T boundary have been reported from nonmarine rocks in the Western Interior (4). The boundary fern spore spike described here is considered provisional in that these sediment samples have yet to be analyzed for iridium. The iridium anomaly has been used elsewhere to confirm continuous deposition across the K/T boundary. The sharp increase in fern spores has been attributed to the rapid recolonization of the region by ferns following a severe ecological disruption caused by a bolide impact (3). The Makoshica occurrence in easternmost Montana is well within the known distribution of fern spore anomalies delineated by Nichols and Fleming (4), who speculated that the known localities could be the result of a bolide impact near Manson, Iowa.

This research is part of molluscan and vertebrate studies supported by the National Science Foundation (JHH), U.S. Department of Energy (JHH), U.S. Bureau of Mines (JHH), and the Beta Zeta Chapter of Sigma Gamma Epsilon (TJK). These studies are in collaboration with David W. Krause of the State University of New York at Stony Brook and the cooperation of the Montana Department of Fish, Wildlife & Parks.